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Abstract
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are uncoupled, but whose state vectors are coupled non-separably in a single centralized
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are that each distributed optimal control not deviate too far from the previous optimal
control, and that the receding horizon updates happen sufficiently fast. The theory is
applied in simulation for stabilization of a formation of vehicles.

Keywords: receding horizon control, model predictive control, distributed control, decen-
tralized control, large scale systems, multi-vehicle formations, coordinated robots.

*Partial support for this work was provided by the DARPA SEC program under grant number F33615-
98-C-3613 and by AFOSR grant number F49620-01-1-0361.
fCorresponding author. Email: dunbar@cds.caltech.edu, Fax: 001-626-796-8914



Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
26 JAN 2004 2. REPORT TYPE 00-00-2004 to 00-00-2004
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Distributed Receding Horizon Control with Aplication to Multi-Vehicle b, GRANT NUMBER

Formation Stabilization
5¢c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

S5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

California Ingtitute of Technology,Control and Dynamical REPORT NUMBER

Systems,Pasadena,CA,91125

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THIS PAGE 47
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



1 Introduction

We are interested in the control of a set of dynamically decoupled subsystems that are
required to perform a cooperative task. An example of such a situation is a group of vehicles
cooperatively converging to a desired formation, as explored in Olfati-Saber et al [23], Dunbar
and Murray [10], Ren and Beard [25], and Leonard and Fiorelli [17]. One control approach
that accommodates a general cooperative objective is receding horizon control. In receding
horizon control, or model predictive control, the current control action is determined by
solving on-line, at each sampling instant, a finite horizon open-loop optimal control problem.
Each optimization yields an open-loop optimal control trajectory and the initial portion of
the trajectory is applied to the system until the next sampling instant. A survey of receding
horizon control is given by Mayne et al [18]. For the problem of interest here, the cooperation
between subsystems can be incorporated in the optimal control problem by including terms
in the cost function that depend on their respective state vectors, as is done in [10] and [23].
It is presumed that at least some of the terms that couple states of cooperating subsystems
are non-separable, i.e., not additively separable. Otherwise, the subsystems would not be
directly cooperating, in the sense that their optimal controls are not directly influenced by
the state of the other subsystem. Henceforth, we refer to each subsystem as an agent and
any two agents that are cooperating are referred to as neighbors. Thus, neighbors have a
non-separable term coupling their states in the single, centralized cost function. Aside from
being able to handle the cooperative performance objective, the receding horizon control
approach is particularly useful when the individual subsystems are also required to satisfy
state and control constraints, as is the case in general for vehicles.

A drawback of the receding horizon control approach to our problem is that currently only
a centralized solution and implementation can guarantee asymptotic stability theoretically.
However, a distributed solution to the problem is desirable, for autonomy of the individual
subsystems and for potential scalability and improved tractability of the approach. In that
case, each agent would be assigned its own optimal control problem, implemented in a
distributed receding horizon fashion.

Previous work on distributed receding horizon control include Jia and Krogh [14], Motee
and Sayyar-Rodsaru [22] and Acar [1]. In all of these papers, the cost is quadratic and
separable, while the dynamics are discrete-time, linear, time-invariant and coupled. Further,
state and input constraints are not included, aside from a stability constraint in [14] that
permits state information exchanged between the agents to be delayed by one update period.
In another work, Jia and Krogh [15] solve a min-max problem for each agent, where again
coupling comes in the dynamics and the neighboring agent states are treated as bounded
disturbances. Stability is obtained by contracting each agents state constraint set at each
sample period, until the objective set is reached. As such, stability does not depend on
information updates with neighboring agents, although such updates may improve perfor-
mance. More recently, Keviczky et al [16] have formulated a distributed model predictive
scheme where each agent optimizes locally for itself and every neighbor at each update. By
this formulation, feasibility becomes difficult to ensure, and no proof of stability is provided.
The authors also consider a hierarchical scheme, similar to that in [19], where the scheme



depends on a particular interconnection graph structure (e.g., no cycles are permitted).

In this paper, we start with an asymptotically stabilizing centralized receding horizon
control law, based on the problem formulation and results in the dissertation of Chen [5],
which is summarized in [6]. The performance objective is relevant for a multi-vehicle for-
mation stabilization problem. The centralized integrated cost is then decomposed to define
distributed integrated costs, and asymptotic stability is proven under stated conditions. Key
requirements for stability are that the receding horizon updates happen sufficiently fast, and
each distributed optimal control trajectory is required to not deviate too far from the pre-
vious optimal trajectory, over the optimized horizon time. We should emphasize that the
multi-vehicle formation stabilization problem is simply a venue. In other problems where
the centralized integrated cost can be decomposed in the same way, namely such that the
summation of the distributed costs recovers the centralized cost, the approach is applicable.
With slight modification to the theory in this paper, the dynamics of the individual subsys-
tems need not be linear or homogeneous, i.e., all subsystems could have different, nonlinear
dynamics. Such extensions are worked out elsewhere [9].

In our distributed approach, no communication is required between agents while the dis-
tributed optimal control problems are being solved. This is an advantage over parallelization
methods [3], where every distributed optimization must communicate with neighboring op-
timizations while iterating. Thus, the approach here would incur less computational and
communication delay effects than an approach using receding horizon control with paral-
lelization methods. On the other hand, parallelization can guarantee convergence to the
centralized solution, whereas the distributed receding horizon controller here, while stabiliz-
ing, will perform differently in general than the centralized receding horizon controller.

The organization of the paper is as follows. Section 2 defines the control objective and
cost function used in the optimal control problem. The cost function is relevant for multiple
vehicle formation stabilization. We note that the stability results are facilitated by this choice
of cost, but the results hold for any cost with a similar decomposable structure. Section 3
defines the optimal control problem and reviews requirements for asymptotic stability of the
centralized receding horizon control law. Section 4 details the distributed receding horizon
implementation and a proof of asymptotic stability. Simulation results of a multi-vehicle
formation are then given in Section 5. Finally, Section 6 discusses conclusions and extensions.

2 Formation Stabilization Objective

In this section, we present the system dynamics and constraints and define the control
objective. To facilitate the analysis, we consider only linear dynamics here, although the
nonlinear case is treated elsewhere [9)].

We wish to stabilize a group of agents toward a common objective in a cooperative way
using receding horizon control. Each agent is assumed to have dynamics, described by an
ordinary differential equation, completely decoupled from all other agents. Specifically, for
i = 1,..., N, agents, the state and control of agent i are z;(t) = (¢;(t),¢:(t)) € R?™ and



u;(t) € R™, respectively, and the dynamics are given by

|0 I |0
where Az—[o 0 ], Bl_lf(n)}'

The matrix [, is the identity matrix of dimension n. Each agent i is also subject to the
input and state constraints

Ul(t) c U, Zz<t) S Z, t > 0.

An admissible control is any piecewise, right-continuous function u;(-) : [0,7] — U, for any
T > 0, such that given an initial state z;(0) € Z, the control generates the state trajectory
zi(t;2;(0)) € Z for all ¢t € [0, 7.

The set ZV is the N-times Cartesian product Z x --- x Z. Concatenating the states
and inputs into vectors as ¢ = (q1,...,qn,), ¢ = (G1,---,q4n,), 2 = (21,..., 2n,) € ZNe and
u = (uy,...,uy,) € UM, the dynamics are equivalently

2(t) = Az(t) + Bu(t), t>0, z(0) given, (1)
where A = diag(A, ..., Ay,), B = diag(By, ..., By, ). Define the invertible map U : R?"Ne —

R2Na gg
{ q } =Uz.
q

Note that U is a unitary matrix, so (U)TU = I.

Definition 1. The control objective is to cooperatively asymptotically stabilize all agents
to z¢ = (2f,...,2%,) € Z"*, an equilibrium point of equation (1), with equilibrium control
equal to zero.

The cooperation is achieved by the minimization of the cost function defined below. The
control objective for each agent 7 is thus to stabilize to z{ while cooperating with neighboring
agents. The position values at z¢ are denoted ¢ = (¢f, ..., q%, ), and the equilibrium velocity
is clearly zero.

Assumption 1. The following holds:

(i) U C R" is compact, convex and contains the origin in its interior, and Z C R?*" is
convex, connected and contains z{ in its interior, for every i =1, ..., Ng;

(ii) each agent ¢ can measure the full state z;, there is no uncertainty, and computational
time is negligible compared to the evolution of the closed-loop dynamics.

Remark 1. In the absence of constraints, linear quadratic optimal control could be used to
meet the cooperative control objective. Convexity of U is related to existence of solutions to
the optimization problem that will be defined, referring the reader to section 4.3 of [5] and
references therein for details. Convexity of both U and Z is relevant in guaranteeing that
the closed-loop system will have nominal robustness properties [13].

4



The multiple vehicle formation is here defined by a set of relative vectors that connect
the desired locations of the vehicles. The desired formation can in turn be viewed as a
graph, as in [11, 25]. For example, consider a desired formation of vehicles in Figure 1,
where the position components of ¢; are denoted (z;,v;) € R% The left figure shows the

5 R4
q

A

Figure 1: Seven vehicle formation: vector structure on the left, and resulting formation on
the right.

vector structure associated with the formation. The numbers correspond to vehicle identity
and a line segment between two numbers is a two dimensional relative vector. The dot in
the center of the figure is the center of geometry of vehicles 1, 2 and 3. Given a desired
location for this center of geometry, and the relative vectors between vehicles as shown, this
formation designates a globally unique location for each of the vehicles. To generalize, a
formation of N, vehicles is uniquely defined given N, — 1 relative vectors, such that each
vehicle is at one end of at least one vector, and 1 vector (denoted ¢4) designating a desired
center of geometry location for a subset of the vehicles. The vehicles used to relate to g4 are
called the core vehicles, consistent with the definition in [23]. The figure on the right shows
the associated vehicle formation, where the core vehicles are denoted by white triangles, and
all other vehicles are denoted by black triangles. The tracking objective is being achieved
for some formation path R 3 ¢ — (qq(t), ga(t)) € R*.

We now generalize the description of the formation as a graph. The vector formation
graph is defined as G = (V, ), where V = {1, 2, ..., N,} is the set of vehicles and € CV x V
is the set of relative vectors between vehicles, where an edge in the graph is an ordered
pair (i,7) € & for every relative vector between vehicles i, 7 € V. All graphs considered
are undirected, so (i,j) € £ = (j,i) € €. Two vehicles i and j are called neighbors if
(i,7) € €. The set of neighbors of agent i is denoted N; C V. In addition, although any two
core vehicles may not have a relative vector between them in the formation, we consider all
core vehicles to be neighbors of one another, as they are all coupled through the tracking



objective.

Let & denote an orientation of the set £, where & C £ contains one and only one of
the two permutations of (i, 7), for all (i, j) € £. Also, without loss of generality, we take the
core vehicles to be 1, 2 and 3, which is the case in Figure 1. As stated, although (2,3) ¢ &,
3 € My and 2 € N3 since 2 and 3 are core vehicles and thus coupled through the tracking
objective.

Assumption. The undirected vector formation graph G is connected.

If the formation graph is not connected, there exists a vehicle whose desired location is not
uniquely specified by the graph, in addition, the cost function that we define would additively
separate into more that one coupled cost function. For a connected graph and resulting cost
function defined below, the centralized receding horizon control law involves a single coupled
optimal control problem that will be given in the next section. The connectivity assumption
clearly holds for the example in Figure 1.

Remark 2. When the minimal number of relative vectors are used to define the formation,
|€0| = N, — 1. It may be that more vectors are added to the formation description, provided
they are consistent with the existing vectors, as described below. Generally, we shall denote
|Eo| = M, M > N,—1. In graph theory, assuming the graph is connected implies M > N,—1
[4].

Let eq,...,e) denote an ordering of the elements of &,. Also, the tail of the edge e,
denoted t(e;), is the first element in the corresponding ordered pair and the head of the
vector h(e;) is the second element. In the case of Figure 1, let

50 = {ela €2, €3, €4, €5, 66} = {(17 2)7 (17 3)7 (17 6)a (1a 7)a (374)7 (57 6)}
For example, we have t(e3) = 1 and h(ez) = 6.

Definition 2. The desired relative vector between any two neighbors ¢ and j is denoted
dij € R™, where it is understood that ¢f + d;; = ¢§. All desired relative vectors are constant
vectors, in length and orientation, and satisfy the following consistency conditions:

e For all (i,7) € £, dij = —dj;.

e When M > N, — 1, if (¢,7), (4,1) and (7,1) are in &, then d;; + d;; = dy.

Definition 3. Given an admissible oriented formation graph G = (V, &) and a formation
path, the formation vector F = (f1, ..., fas1) € R™™*Y has components f; € R” defined as

fi=a—q;+dij, wherei=t(e;), j=h(e), VI=1,..., M,

1
frusi =¢s —da, gy = g(fh + ¢+ q3).



For a stabilization objective, ¢4(t) = 0, Vt € R, and to be compatible with the control
objective, g4 = (¢ + ¢5 + ¢5)/3. Clearly, the vehicles are in formation when F' = 0. Write
the linear mapping from ¢ to F' as:

F=Gq+d, G"=[CuV]. (2)
The vector d = (...,dij, ..., —qq) has the ordering of the vectors d;; consistent with the def-
inition of F. The matrix VT = [V} ... Vy,] € RN has elements V; € R™" defined
as
V= 1y, ifi=1,2,3
! 0, otherwise,

The matrix C(,y € R"™*M) g related to the incidence matriz C € RN*M | where the
elements of C' = [¢;;] are defined in terms of the elements of the oriented edge set &, as

+1, vertex i = t(e )
ci; =4 —1, vertex i = h(e;)
0, otherwise

The matrix (', is defined by replacing each element of C' with that element multiplied by
I(ny. The incidence matrix for the example in Figure 1 is

I
e e e N
cCooco RO
R I N i
T R e R e R e R e R

|
coorRrRrR OO
OO0 OO

In defining the cost function for the optimal control problem, the following proposition
is useful.

Proposition 1. The matriz G in equation (2) has full column rank, equal to dim(q) = nN,.

Proof. Since the vector formation graph is connected, the incidence matrix C' has rank
(Ng — 1) [4]. Scaling the entries of C' with the identity matrix I(,) implies the rank of Ci,)
is equal to n(N, — 1). The matrix V in equation (2) has full column rank equal to n, and
each column vector is linearly independent from the column vectors in C,). Thus, G has
rank nN,, which is the column dimension of the matrix. [ |

Remark 3. For the rest of the paper, we shall use the norm ||z|| to denote the Euclidean
norm of any vector z € R™. In cases where z is a curve, we abuse the notation ||z|| to mean
||2(¢)|| at some instant of time ¢.



From the definition of the formation vector, we know that G¢¢ = —d and so
1] = (Gla—a)"Gla— ) = lla — ¢[[&re-

In the following we penalize ||F||* and ||¢||? in the centralized cost function. To define the
objective in terms of the state z, we have that

{G(q;chz@wz—z‘:), where é:[G 0 }

0 Imnny

As a result, we have
2 12 2
EIE +1lgl)” = 1z = 2°l|zrg-
In the next section, the optimal control problem associated with the multiple vehicle forma-
tion stabilization objective is defined for receding horizon control.

3 Receding Horizon Control

In this section, we give the receding horizon control law that achieves the cooperative control
objective, implemented in a centralized fashion. The centralized integrated cost function of
interest is

Lizyu)= Y wllai—a+dyllP +wllas — aall® + Il + pulul P,
(i,j)E 50

with positive weighting constants w, v and u. We refer to the term w||q,. —qq||* as the tracking
cost, although we are concerned with stabilization.

Remark 4. For collision avoidance, an appropriate cost function between any two agents
is defined in [23]. Alternatively, to guarantee avoidance, collision avoidance can be cast
as a constraint, as in [26]. We do not incorporate any type of collision avoidance in this
paper, although coupling constraints between neighboring agents will be discussed in the
conclusions.

From the previous section, we also have that

G'G 0
L(z,u) = ||z = 2|5 + plul)?, Q=" . 3
(zu) = [lz = 2°lg + pllul’, @ 0 vl (3)

From Proposition 1, @ is positive definite and clearly symmetric. At any time ¢, given z(t)
and fixed horizon time T, the centralized open-loop optimal control problem is

Problem 1. Find

J*(2(t), T) = min J(2(t), u(-),T),

u(-)



J(2(t), u(-), T) = /t [12(7: 2(8) — 2% + pllu(D)I]* dr +[]2(t + T; 2(t)) — 2°[[3,

subject to

where P = PT > 0 and
Q) == {z e R*e . ||z - 2°||% < @, a>0}.

The equation (4) is called the terminal constraint, as it is a constraint enforced only at
the terminal or end time. Let the first optimal control problem be initialized at some time
to € R and let 6 denote the receding horizon update period. The closed-loop system, for
which stability is to be guaranteed, is

(1) = Az(7) + Bul, (1), T >ty, (5)

cent

where the centralized receding horizon control law is

u:ent (T) = U’Zent

(1;2(t), TE€[t,t+9], 0<d<T,

and u’,.(s;2(t)), s € [t,t + T, is the optimal open-loop solution (assumed to exist) to
Problem 1 with initial state z(¢). The receding horizon control law is defined for all ¢ > t( by
applying the open-loop optimal solution until each new initial state update z(t) < z(t + 0)
is available. This is what we mean when we say a controller is implemented in a “receding
horizon fashion”, since the optimization horizon is always 7' seconds ahead of each new
update time. The reason to use a sampling period shorter than the open-loop horizon time
is that, practically, there is uncertainty and applying only a fraction of the open-loop control
before re-sampling and recomputing mitigates the effects of uncertainty. The notation above
shows the implicit dependence of the optimal open-loop control u?, . (-) on the initial state
z(t) through the optimal control problem. The optimal open-loop state trajectory is denoted
2k (15 2(1)). Since Problem 1 is time-invariant, we can set t = 0 and solve the optimal control
problem at each initial state update over the time interval [0, 7.

Proof of asymptotic stability of the closed-loop dynamics under the receding horizon
control implementation can be established by taking the optimal cost function J*(-) as a

Lyapunov function.

Definition 4. A feasible control is any admissible control such that all state constraints in
Problem 1 are satisfied and the optimal cost function is bounded. Let Z denote the set of
states for which there exists a feasible control.



Assumption 2. The following conditions are satisfied:

(i) the largest constant a > 0 in the terminal constraint (4) is chosen such that Q(a) C
ZNe and the linear state feedback v = K(z — 2¢) and the positive-definite, symmetric
terminal cost P satisfy

(A4 BK)'P+ P(A+ BK) = —(Q + uK"K) } (6)
K(z—z°) €U, Vze Qa):

(ii) the optimal solution to Problem 1 exists and is numerically obtainable for all z € Z.

Theorem 1. [6, Theorem 1] Under Assumptions 1 and 2, for any 6 € (0,T], z¢ is an
asymptotically stable equilibrium point of the closed-loop system (5) with region of attraction

Z.

The stability result in [6] only requires that Problem 1 be feasible at initialization, rather
than requiring the optimal solution at each update. Also, ¢ is required to be sufficiently
small since the authors consider quantization errors in the numerical implementation of the
receding horizon control law.

So far, we have detailed the conditions required for asymptotic stability of the centralized
receding horizon control law. In the next section, N, optimal control problems are defined
for a distributed receding horizon implementation. It will be proven that, for sufficiently
fast updates (small §), the distributed receding horizon control laws are asymptotically
stabilizing.

4 Distributed Receding Horizon Control

In this section, a distributed receding horizon control law is defined. We first introduce
some useful notation and define N, separate optimal control problems, that are solved and
implemented in a distributed receding horizon fashion. Next, we analyze the stability of the
closed-loop system. Finally, we comment on alternative formulations.

4.1 Distributed Optimal Control Problems

In the centralized integrated cost, the non-separable terms ||q; — g; + d;;||?, for all (4, 5) € &,
as well as the tracking term ||q, — gq||?, couple the states of neighboring agents. Recall that
the set of neighbors of each agent ¢ is denoted N;. In some cases, it will be easier to denote
the set of neighbors N; as —i and both shall be used interchangeably.

Let z_; = (2, -, ZJ'Wil) denote the vector of states of the neighbors of 7, i.e., j € N, k =
1,...,|NV;|, where the ordering of the states is arbitrary but fixed. Also, let ¢_; = (¢j,, ..., quil)
and u_; = (uj,, ..., uilNi|>’ where the ordering is consistent with z_;.

10



Definition 5. The distributed integrated cost in the optimal control problem for any agent
i=1,...,N, is defined as

Li(zi, z—i,wi) = Li(25,2-) + 7M||Ui||27

B w . :

where L7(zi,z_;) =7~ [Z {EHqZ — gt dij||2} +v]|gl® + Ld(l)] ;
JEN;

w 2 ;
ay _ § sllas —adl®, i=1,2,3
v>1 L) { 0, otherwise.

Thus, D27 Li(zi, z-i, us) = 7L(z,u) = 7 [[12 = 291G + plul ]

From the definition, the distributed integrated cost for any agent ¢ includes: one-half of
each relative vector penalty coupling ¢ with each neighbor j € N, the velocity and control
penalties for ¢, and, if 7 is one of the three core vehicles (1, 2 or 3), one-third of the tracking
penalty. In addition, all terms are multiplied by a common factor v, a constant greater than
one. In the proof of stability, the key structure is that the sum of the distributed integrated
costs equals the centralized cost multiplied by . For any problem where the centralized cost
can be decomposed in the same way, and the other stated assumptions hold, the stability
results that follow are applicable.

Remark 5. The stability results that follow do not depend on equal weighting of terms
between neighboring agents. What is required is that the distributed integrated costs sum
up to be the centralized cost, multiplied by a factor () greater than one. The weighting will
of course affect the performance of the closed-loop system, so making the weights lop-sided
would result in one agent reacting more to the term than the corresponding neighbor. Note
that in the limit that one agent takes the entire term, while the other ignores the term, we
have a leader-follower effect.

At each update of the distributed receding horizon control laws, every agent

e senses its own current state and senses or receives the current state of its neighbors,
and

e computes the optimal control trajectory, comparing it to an assumed control trajectory
and based on some assumed control trajectories for its neighbors.

Prior to the next receding horizon update, every agent
e implements the current optimal control trajectory,
e computes the next assumed control trajectory, to be used at the next update,

e transmits the assumed trajectory to all of its neighbors and receives the assumed control
trajectories from each neighbor.

11



Implicit in the procedure above is that the assumed control for each agent 7 is consistent in
every optimization problem that it occurs, i.e., in the optimal control problem for agent i
and for each neighbor j € N;. Before defining the computation for the optimal and assumed
control trajectories, we introduce some notation.

Definition 6. Consider a common interval of time [t, ¢+ 7] in the optimal control problem
for every agent ¢ = 1, ..., N,. Associated with the initial state z;(t), we denote:

applied control  w;(+; z;(t)) the control being optimized in the problem and applied to
the system over the subinterval [¢,t + 4];

assumed control ;(+; z;(t)) the control to which the optimized control is compared and
which all neighbors assume ¢ is employing over the interval.

The state trajectories corresponding to the applied and assumed controls are denoted
zi(+; z:(t)) and Z;(-; 2(t)), respectively. For each agent i, given the current state z;(f) and
assumed control 4;(s;z;(t)), s € [t,t + T], of every neighbor j € N;, the assumed state
trajectory Z;(s;z;(t)), s € [t,t + T, is computed using the dynamic model for that agent.
An important point is that the initial condition of every assumed state trajectory is equal
to the actual state value of the corresponding agent at that time, that is

Zi(t; zi(t)) = z(¢)

foreveryi =1, ..., N,. To be consistent with the notation z_;, let Z2_;(-; z_;(t)) and @_;(-; 2_;(t))
be the vector of assumed neighbor states and controls, respectively, of agent . With consis-
tent initial conditions then we also have that Z_;(¢; z_;(t)) = z_;(¢).

The distributed optimal control problems are now defined. Denote the receding horizon
update times as t; = to + ok, where k € N = {0, 1,2,...}. Common to each problem, we are
given the constant v € (1,00) from Definition 5, update period 6 € (0,7") and fixed horizon
time T'. Conditions will be placed on the update period ¢ in the next section to guarantee
stability of the closed-loop system. The collection of distributed open-loop optimal control
problems is

Problem 2. For every agent i = 1, ..., N, and at any update time ¢, given z;(tx), Z2_;(tx; 2—i(tx)) =
z_i(ty), and 0;(s; z;(tg)) and 4_;(s; z_;(ty)) for all s € [ty, tx + T}, find

JH(zi(tg), z—i(tg), T) = min J;(z; (L), z—i(tx), wi (+; z:(tx)), T'),

wi(+)

where J;(z;(tr), z—i(tx), u;(+; z:(tx)), T') is equal to

tat+T
/ Li(2i(73 2i(tn)), 2-o(73 2-i(tn)), w5 2i(t))) A7+ ll2i(ty + T 2i(t)) — 2|3,

ty

12



subject to

7{’1’(5; zi(tr)) = Aizi(s; zi(te)) + Biwi(s; zi(tr)) )
Zi(s32(te)) = Aj%5(s; 25(tk)) + By (s 2;(te)), Vi € N
ui(s; zi(ty)) €U s € [tg, tr +T7,

zi(s;zi(t) € Z
|[wi(s; 2i(tr)) — i(s; zi(t))|] < 0°k
2ty + T 2i(t)) € Qiles), (7)

given positive constant x € (0,00), P; = P > 0 and where

Qi(e)) ={z €R™ : ||z = 2{||}, <&, & > 0}.

As part of the optimal control problem, the applied control for 7 is constrained to be
at most a distance of §°x from the assumed control. We refer to this constraint as the
control comparison constraint. Naturally, the constraint is a means of enforcing a degree of
consistency between what an agent is actually doing and what neighbors believe that agent

is doing. The assumed control for each agent, as well as each terminal cost weighting P;,
will be defined below.

Remark 6. Instead of communicating assumed controls, neighboring agents could compute
and transmit the corresponding assumed state, since that is what each distributed optimal
control problem depends upon. That would remove the need for the differential equation of
each neighbor, simplifying each local optimization problem. We shall discuss this further in
Section 4.3.

The optimal solution to each distributed optimal control problem, assumed to exist, is
denoted

ugy(75 2i(te)), 7 € [t te + T,
The closed-loop system, for which stability is to be guaranteed, is
(1) = Az(1) + Buyi, (1), 7>t (8)
where the distributed receding horizon control law is
ugia (75 2(tk)) = (ug (75 21(Ek)), - g, (75 2w, (k)

for 7 € [ty,tx + 0], 0 < d < T and k € N. As before, the receding horizon control law is
updated when each new initial state update z(ty) «— z(tx41) is available. The optimal state
for agent i is denoted z;(7; z;(tx)), for all 7 € [ty tx + T]. The concatenated vector of the
distributed optimal states is denoted

Zaise (T3 2(t)) = (zan (73 21 (8)), -5 Zaw, (75 28 (1))

for all 7 € [tg, tx + T]. Although we denote the optimal control for agent i as u¥,(7; z;(tx)),
it is understood that this control is implicitly dependent on the initial state z;(tx) and the
initial states of the neighbors z_;(t).
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Assumption 3. The following conditions are satisfied, for every ¢ = 1, ..., Ng:

(i) the positive constants e; > 0 are chosen such that ;(g;) € Z and such that an
asymptotically stabilizing feedback u; = K;(z; — 2f) and positive-definite, symmetric

(2
matrix P; satisfy

(A; + BiKi)TPi + P(A; + BK;) = —(Q; + ,UKiTKi> }

Ki(zi — 28) €U, Vz € Qi(ey). (9)

Moreover, (); is chosen such that @ = diag(Q1, ..., Qn,) satisfies @ > (), where @ is
defined in equation (3);

(ii) at any receding horizon update time, the collection of open-loop optimal control prob-
lems in Problem 2 are solved globally synchronously;

(iii) communication of control trajectories between neighboring agents is lossless.

Remark 7. The receding horizon control law is employed for all time after the initialization
and the decoupled linear feedbacks K; need not be employed, even after agent i enters €2;(g;).
The value for €; simply determines the size of the set over which the conditions in Assumption
3 are satisfied. It may be desired that an agent switch from the receding horizon controller to
the decoupled linear feedbacks once inside the terminal constraint set, known as dual-mode
receding horizon control in the literature [20]. Generally, €; could be chosen to satisfy the
conditions in Assumption 3 and the additional condition

Q;(g;) ﬂQj(ej) =0, foralli,j=1,...,N,, i # ],

so that once inside Q;(g;), any agent ¢ is closer to its objective state than any other agents
objective state. In that case, the agents employ the decoupled feedbacks only if they are
close enough to their objective state and far enough from any other agents objective state.

Remark 8. Due to condition (ii) above, the distributed receding horizon control laws are not
technically decentralized, since a globally synchronous implementation requires centralized
clock keeping [3]. However, a locally synchronous, and consequently decentralized, version
is also currently being constructed [9)].

Although not employed, the decoupled linear feedbacks K; can asymptotically stabilize
each agent to its objective state once the agent enters the decoupled terminal constraint set
(7). One choice for Q; that would satisfy @ > @ is Q; = Amax(Q)I(2n), Where A\pax(Q) is the
maximum eigenvalue of the symmetric matrix ). Define

K = diag(Ky,...,Ky,), P =diag(P,..., Px,).
As a consequence of assumption (i) above, Pis positive-definite and symmetric, and satisfies
ANT ~ o~ ~ ~ o~ o~
(A+BE) P+P(A+BK) =~ (Q+pk"K) <~ (Q+pkK"K).  (10)

We now define the initialization procedure for the distributed receding horizon control law,
and the assumed control for each agent at each update time.
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Definition 7. (Initialization) Denote time t_; =ty —§. Solve Problem 2 with initial state
z(t_y), setting u;(7; 2z;(t—1)) = 0 for all 7 € [t_1,t_1 + T] and every i = 1,..., N,, and also
setting © = +o00. The optimal trajectories are denoted u}y,(7; z;(t_1)) and z;(7; z;(t-1)), for
every i = 1,..., N,. The optimal control u},(7;2(t-1)) is applied for 7 € [t_1, to].

At initialization, the control comparison constraint is effectively removed by setting x
to a large number. The assumed controls at initialization will have an impact on closed-
loop performance. If instead the centralized problem were solved at time ¢_;, and the
solution disseminated to the agents, the closed-loop performance may be closer to that of
the centralized implementation. In the simulation results, we note that the performance is
already close to that of the centralized implementation using the initialization procedure as
defined above.

Definition 8. (Assumed Control) For each agent ¢ = 1,..., N, and for any k € N, the
assumed control U;(-; z;(ty)) : [tx, tx + T] — U is defined as follows:

if 2(t,) = 2, then 4;(7; 2;(tx)) =0, 7 € [tg, tr + T},

wy (75 2i(th-1)), T € [tpytpr + T

otherwise a;(7; 2(t1.)) = { Kl-(zf(T; 2yt + T zi(te1))) — 25), T E e + Tt + 1] 7

where 2F(s;25(0)) is the closed-loop solution to

i

2(s) = (A + BiK) (2 (s) — 2), s>0, given 2/(0).
The assumed control for agent ¢ at initial time t; is generated and transmitted to each
neighbor j € N; in the time window [t;_1, tx].

To state Definition 8 in words, in Problem 2 every agent is assuming all neighbors will
continue along their previous optimal path, finishing with the decoupled linear control laws
defined in Assumption 3, unless the control objective is met at any update time after ini-
tialization. In the latter case, neighbors are assumed to do nothing, i.e., apply zero control.
Notice that the communication of control trajectories between neighboring agents is not
required to happen instantaneously, but over each receding horizon update time interval.

Remark 9. The test of whether z(t;) = 2¢ in generating the assumed control is a centralized
test. The reason for the test is its use in the proof of Proposition 2 in the next section. We
note that the asymptotic stability result in the next section guarantees that only in the limit
as ty — oo do we have z(t;) — z¢ Practically then, one could assume z(t;) # z¢, which is
true for any finite £ when z(¢_;) # z¢, and ignore the test completely. Also, if dual-mode
receding horizon control is used, the test can be removed, since Proposition 2 is not used to
prove asymptotic stability in that case. A dual-mode version will be provided in the next
section.

If Jf(zi(t-1),2-i(t_1),T) = 0 for any agent ¢, then it can be shown that z;(t_1) = zf and
zi(toq) = 2§, for each neighbor j € N;, is the unique feasible solution, i.e., the local objective
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has been met. However, even if J*(z;(t-1), 2—;(t-1),T) = 0, it may not remain zero for all k €
N. An example is where 7 and all neighbors j € N; are initialized meeting their objective, but
some [ € N; has not met its objective. Thus, in the subsequent optimizations, j will react to
[, followed by i reacting to 7, since the coupling cost terms become nontrivial. Consequently,
we can not guarantee that each distributed optimal value function J; (z;(tx), z—i(tx), T') will
decrease with each receding horizon update. Instead, we show in the next section that the
sum of the distributed optimal value functions is a Lyapunov function that does decrease at
each update, enabling a proof that the distributed receding horizon control laws collectively
meet the control objective.

4.2 Stability Analysis

We now proceed with analyzing the distributed receding horizon control laws. At any time
tx, k € N, the sum of the optimal distributed value functions is denoted as

T, T) = 3 (b =41, )

For stability of the distributed receding horizon control laws, we investigate J&(z(t),T) as
a Lyapunov function.

Definition 9. Problem 2 is feasible at time t if for every i = 1, ..., N,, there exists a control
w;(+5zi(tg)) © [te, te + T — U such that all the constraints are satisfied and the value function
Ji(zi(t), z—i(tr), us(+), T) is bounded. Let Zs, C ZM denote the set of initial states for which
Problem 2 is feasible at initialization (time ¢t =t_;), as defined in Definition 7.

Lemma 1. Under Assumptions 1 and 3, Zs is a positively invariant set with respect to
the closed-loop system (8) setting uh,(; zi(tr)) = Wi+ z:(tx)) for every i = 1,..., N, and for
k € N. Thus, feasibility at initialization implies subsequent feasibility.

The proof follows immediately from Definitions 7 and 8. Note that the assumed control
4; is exactly the feasible control trajectory used in Lemma 2 of [6] to show initial feasibility
implies subsequent feasibility of the on-line optimization problem in the centralized case.
Clearly, 2¢ is in the set Zy.

Remark 10. Since we will be exploring the closed-loop behavior for initial states that start
in Zy,, we can immediately infer that any closed-loop state trajectory will remain bounded.
Specifically, if an initial state can be driven to the compact terminal constraint set in finite
time using bounded control (I is compact), then the optimal trajectory from that state will
remain bounded. In the bounding argument for the proof of stability, we will make use of
the notation

l|25:(T:tk) — 27|| < R, forany € [ty,tpy+T)], keN, foralli=1,...,N,.  (11)

Moreover, let Uyax > 0 be a positive scalar denoting the maximum-norm value over all
feasible controls u(t) € U at any time t.
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We make the following assumption.

Assumption 4. The optimal solution to Problem 2 exists and is numerically obtainable for
any z(ty) € Zx.

Given the additional assumption above, we have the following result.

Lemma 2. Under Assumptions 1, 3 and 4, Zx is a positively invariant set with respect to
the closed-loop system (8). Thus, if z(t_1) € Zx, 25;,(T) € Zx. for all T > t_;.

The next result says that the net objective of the distributed receding horizon control
laws is consistent with the control objective.

Proposition 2. Under Assumptions 1, 8 and 4, for a given fixed horizon time T > 0 and
at any time ty, k € N,

1. J5(2(tg), T) > 0 for any z(ty) € Zx, and J&(2(ty), T) = 0 if and only if z(t) = 2°,
2. JE(2(ty), T) is continuous at z(ty) = 2°.

Proof. The proposition is similar to Lemma A.1 in [5]. We prove item 1 here, while item 2

follows closely along the lines of the proof in the lemma.

1. The non-negativity of J5(z(tx),T) follows directly from L;(z;, 2_;,u;) > 0 and P, > 0, for

alli =1,..., N,. It remains therefore to prove that equality to zero is equivalent to z(tx) = 2°.
(=) J&(2(t), T) = 0 implies that for each i = 1,..., N,,

Y zg: (e + T 2i(te)) — Zf||?31 =0 and

tp+T
/ Li(25(7; 2i(tk)), 2-i(73 2-i(te)), ug (73 2i(tk))) d7 = 0.
tg

Since the integrand is piece-wise continuous in 7 on [tg,t; + T] and nonnegative, we have
that

Li(z4i(7s 2i(th)), 2-a(73 2i(th)), g (75 20(8))) = 0, 97 € [t T + T,

and for every i = 1, ..., N,. From Definition 5, this implies u}},(7; 2z;(tx)) = 0 and ¢, (7; z:(t)) =
0, for all 7 € [tg,tx + T, meeting the control objective for the velocity for every i. Fur-
ther, since the distributed optimal velocity is identically zero, ¢4 (7; ¢:i(tx)) = ¢:(tx), for all
T € [tr, tx + T| and every i. Finally, from the distributed terminal costs, we have

Y||zi(tk) — z{|[5, =0, for every i =1,..., N,.

Since every P, is positive definite and ~y is positive, z;(tx) = z¢ for every i, which is equivalent
to z(tx) = 2°. We must also guarantee that the resulting distributed optimal control and
state are feasible. The constraints z,(7; z;(tx)) € Z and u};,(7; 2;(t;)) € U are trivial, since
zf and 0 are in the interior of Z and U, respectively, by Assumption 1. Also, z{ € Q;(g;) so
the terminal constraint is satisfied. Finally, since z(t;) = 2, by Definition 8, u;(7; z;(tx)) = 0
for all 7 € [tg, tx + T] and every 4, so the control comparison constraint is also satisfied.
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(«=) Given z(t) = z¢, by Definition 8 we have that for each i = 1, ..., No, ©;(7; 2i(tx)) = 0
for all 7 € [tg, tx + T]. Consequently, ¢;(7;2;(tx)) = ¢i(tx) = 0 and §¢;(7; z;(tx)) = ¢i(tx) = 4,
for all 7 € [tg, tx + T, and every i. For any agent 4, the local value function becomes

tetT w
[0S {Slhatat) - g} + 3 Gl )l + pllustrse)|) o
tk JEN;

+ lzite + T 2:(t) = 2[5,

using ¢ + di; = qf, for each neighbor j € Nj. If i is a core vehicle (i.e., i is 1, 2 or 3),
we also have an addition term due to the tracking cost. In any case, given z;(tx) = z¢, the
optimal and feasible control for each open-loop optimization problem is ul,;(7; z;(tx)) = 0
for all 7 € [ty,tx + T). Therefore, ¢4 (7;2i(tx)) = 0 and ¢i(7;¢:(tx)) = qi(ty) = ¢f, for
all 7 € [tg,tr + T]. Since this holds for any i, every JF(z(tx),z—i(tx),T) = 0 and so
J5(z(t), T) = 0. [

The condition if z(t;) = 2° then 4;(7; 2;(tx)) = 0 in Definition 8 was used in showing
the equivalence of J3(z(tx),T) = 0 and z(tx) = 2°. For a dual-mode implementation,
this equivalence is not required, eliminating the need for this condition in constructing any
assumed control.

Our objective is to show the distributed receding horizon control law achieves the control
objective for sufficiently small §. We begin with three lemmas that are used to bound the
Lyapunov function candidate J&(z(t;),T). The first lemma gives a bounding result on the
decrease in J5(+,T') from one update to the next.

Lemma 3. Under Assumptions 1, 3 and 4, for a given fixed horizon time T > 0, there exists
a positive constant & > 0 such that

tk+6 Nll
J5(2(tes1), T) — J5(2(tk), T) < —/ > L2575 (), 2-i(s 2oi(t)) T+ 6%,
b =1
for any 6 € (0,T] and for any z(ty) € Zx, k € N.
Proof. The sum of the optimal distributed value functions for a given z(t;) € Zx is
tk—l-T Na
J5(2(te), T) = / > Li(zsi(rs 2i(t)) Ao (T 2mi(t)), uiy (75 2i(t))) dr
b i=1
+ 2 (b + T 2(8)) — 2°113.

Applying the optimal control for some ¢ € (0,7 seconds, we are now at time ty1q =ty + 9,
with new state update z(tx41). A feasible control for the optimal control problem of each
agent over the new time interval 7 € [tg 1, tpr1 + T is wi(+; 2i(tes1)) = Wi+ zi(ter1)), given
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in Definition 8. Thus, we have for any : = 1, ..., N,

tet1+T

Ji(zi(tkr1), 2-i(tesn), T) = / Li(z3(7; zi(ths1)), 2-i(T5 2—i(thn))s ug (75 2i(frgn))) AT

tkt1
25t + T3 2i(tr)) — 2[5,
tpe1+T
<[ Lt (), ()
tot1
+&i(tess + T 2iltesn)) — %115,
Summing over ¢, we can upper bound J5(z(tg+1),7"), and comparing to J5(2(tx),T) we have

By (altae). TI=J5 (0 T) 4 [ S0 L irialte)) 2l i) w7 200)

tk i=1

< /k ZaLi@(T%Zi(tkﬂ))af—z’(ﬂZ—z’(tkﬂ)),ﬂi(ﬂZi(tkH)))dT

1 =1

_/k ZaLi(Z;i(T;Zi(tkz))aé—i(T? Zoi(t), ul (75 2:(ty))) dr

et =1

tey1+T Na
+ / S LG 2ten), (7 2t ), (7 2i(tn)) dr
t

B+ i=1
Na

+ Y (e + T 2itks) — 25105, — Y2gi (B + T3 2(8)) — 2°115.
=1

Using the notation 2(+; z) = (21(-;21), ..., 2n,(*; 2w, ) ), We observe that

Na
D Nziltres + T; ziltugn)) — 2515, = 12(Eksr + T; 2(tegn)) — 2°11%

i=1
and also that 2(t,+71"; 2(tg41)) = 25 (te+T; 2(t)). From the definition for each u;(7; z;(tg41))
with 7 € [ty + T, tg+1 + 1] and using the notation in equation (10), we also have

Za: Li(Zi(7; 2i(tha1))s =i (75 2—i(teg)), @i (75 2i(tkan))) = YE(T3 2(Ers)) — 2115,

where @ =Q+ uIA( TK. Finally, from the properties of the feedback in Assumption 3 and
the notation in equation (10), we have

tpr1+T
12(thrn + T 2(tean)) = 2°I5 = |20tk + T3 2(tksn)) = 2°l[% = —/ 1273 2(tee1)) — 2°[[5dr,
t+T
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where Q' = @ + M}?Tf? and Q' > @ Thus, we can write

top1+T Na
/ E Li(2:(7; 2i(tey1)), 2-i(T5 2-i(thrr)), Wil T5 2i(thsn))) dT
t

T =
Ng
+ Y itk + T 2i(tes)) — 26115 — Vlzda e + T3 2(t)) — 2913
i=1

tp1+T
= o [ e ) - I < 0
tutT

Now, we have

ty+8 Na
J5(2(tran), T)=J5(2(t), T) +/ D Li(z(rs zlte)), 2-a(rs 2-ilte)), uip (75 2(8))) dr

tk i=1

< /tk Za:Li(é’i(T?Zi(tk+1))>5—z’(75Z—i(tk+1))»ﬁi(7;Zi(tkﬂ))) dr

k1 =1

—/k ZaLi(Z;i(T;Zi(tk»aéfi(T; 2-i(t)), uai (75 2i(te))) dr.

bt =1

By definition, each Z;(7; z;(tx+1)) = 25:(7; zi(tr)) and ;(75 2;(te11)) = ub,; (75 2:(tx)), over the
interval 7 € [tgy1,t + T]. Consequently, we have from Definition 5

/k ZaLz‘(éi(T; Zi(tr1)), 2-i(T3 2mi(tegn), G (T3 2i(frrn))) A7

terr =1

_ / k Za Li(25:(75 2i(tr)), 22 (75 25 (t)), why (75 2 (tx))) d7

tht1 =
te+T Na
= [ 3 i att) - i) + P
k1l =1 jEN;
— 114373 2:(t8)) = 0575 5 (ta) + dgl 2} dr
tp+T W
+ / > oo {lla(mi zit) + 4 (s 25 (80) + @73 2(t)) = 3adll?

k+1

(3,5,1)€€c
11375 2(0)) + (73 23(00)) + (73 20(t) — 3aal 2} dr

where & = {(1,2,3),(3,1,2),(2,3,1)}. For the remainder of the proof, we are interested
in finding an upper bound for the expression on the right hand side of the equality above.
Consider the terms in the first integral

s (75 2 () — @iy (75 25 (t)) + dil P — (¢ (75 2 (b)) — G5(73 5 () + digl I,
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over the interval 7 € [ty11,tx+7T|. The first term can be bounded using the triangle inequality
as

s (75 2i(t)) — @y (75 25 () + dig|°
= i (75 2i(tr)) — a3 (73 2(tk)) £ G5(75 ¢5 (te)) + dij |
< g (75 20(te)) — 45(73 45 (t)) + dig| P + 114 (75 @5(t)) — a3 (75 25 (1)) 112
+ 2/|q5 (75 2i(tw)) — 45 (75 45(t)) + dil| - 11G5(73 45 () — agi (73 25 ()]
With this upper bound, we have a cancellation with the negative term ||¢},(7; 2:(tx)) —

4i(7;q;(tx)) + dij||* in the integral. Now, considering the terms in the second integral,
particularly the first term, we can use that same bounding argument to get

(75 2i(tn)) + 4 (75 25 (tk)) + ¢ (75 21(tx)) — 3al|?
= ||qz: (73 2 (t)) + 4 (73 2 (te)) + @ (75 20(tn)) £ G5(73 2(t)) £ Gu(75 21(tk)) — 3qal|?
< gii(7s 2i(t)) + 45(75 2 (tr)) + G(75 20(tx)) — 3qal
+ 2l]qg (75 2i(tk)) + (75 25(8k)) + Q75 20(tk)) — 3qal|
Nag (7325 (tk)) — 45(73 25 () + qau (73 21()) — @u(T3 21 (28)) ||
+ [lqz; (75 25 (te)) — G573 2(tk)) + @i (75 20(tk)) — Q75 20 (te)) |-

Using the triangle inequality again we bound the term
g (75 25 (tk)) — 45 (75 2 (8) + qu (75 20(tk)) — Q75 21 (t)) |
<|lag; (73 25 (tx)) — @5 (5 25|+ au (T3 20(te)) — @75 z0(t) |-

Substitution back into the integral equations, after cancellations, yields an upper bound
given as

tp+T Na w
7/ > —{2||Q§i(7% zi(te)) — 4573 5(tk)) + dagl] - 1165(75 45 (k) — ag; (75 2;(8)) ]

b1 =1 jeN; 2
11575 05 (1)) — 43 (7 5 ()]} dr

t+T w
- ’Y/ > 2—7{2Hq22~(7; 2(tk) + G (7 2 (t)) + G (73 2(te)) — 3q4l|
tpa1 (

i,5,l)€E
(Mag (7525 (t)) = @575 25t + g (73 20t)) — @ z0(te)] )
* A * A 2
+ (Mg (75 2 () — @5 (75 25 (G + iy (75 20(8)) — Q7 20 (te))|| ) } dr.
Since each term in the integral is non-negative, we can upper bound this expression by

extending the interval of integration from [tgi1,tx + T to [tg, tx + T]. The reason for doing
this is that for any j = 1,..., Na, 25 (tx; 2i(t)) = Z;(tx; 2j(tx)), thereby matching the initial
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conditions for the two trajectories we are comparing. Now, for any j, we can bound the term
g3 (75 25 () — (75 23 ()| < / [l (53 23 (t)) — d5(s3 23 (t))|| ds

/ / sy (7 25(88)) — 5 23 (1)) ]| g ds

§/ / k6% dn ds = —/<;(52(T—tk)2.
te Jt 2

From equation (11), and using the triangle inequality and ¢f + d;; = ¢5, we can also bound
the term

g (75 2i(tk)) — 45(75 05 (tr)) + dig|] < llqgi (75 2i(te)) — Gl + 1145 (75 45 (tr)) — ¢§I| < 2R.
Similarly, using q¢f + ¢5 + ¢§ = 3qa, we have
gz (75 2i(tk)) + 45 (75 25 () + QT3 21(tk)) — 3qal|
< lggi (75 zi(te)) — @1l + 1165(73 45 (tr)) — g5l + llan(m; @u(tr)) — g/l < 3R.

Note that vajl Zje/\fi 1/2 = M, where M is the number of relative vectors used to define
the formation objective in Section 2. Substitution in the integral equations yields the upper
bound

'y/ttHT [Z > = {2Rm52 te)? 4+ K254 (T — tk)4/4}

=1 jeN;

+ Z {6R/15 T — 1) + K0T — tk)4}] dr

(2,7, l)ES

= yw /:HT [(6M + 2)Rk6*(T — t4)/3 + (BM/4+ 5/9)x*0* (1 — t1,)* /5] dr

< 0*wrT?(2M +2/3) [3R 4 k6°T?] .

For the last term in the brackets to be a constant independent of §, we can bound the
expression by setting § = T inside the brackets, since § € (0,7T]. Finally, we have

Js(2(tesr), T) =I5 (2(t), T)

ty+6 Na
< —/ D L5 z(t), 2oa(ms 2 (), w75 20(t))) AT+ 6%€

k i=1

IN

_ / S L ), Al ei(t) dr 4 %€,

t i=1
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where
£ =ywrT?(2M +2/3) [3R + kT"]. (12)
This completes the proof. |

Ultimately, we want to show that J&(-,T) decreases from one update to the next along
the actual closed-loop trajectories. The next two lemmas show that, for sufficiently small
0, the bounding expression above can be bounded by a negative-definite function of the
closed-loop trajectories.

Lemma 4. Under Assumptions 1, 8 and 4, for any z(tx) € Zs, k € N, such that at least
one agent i satisfies z;(ty) # =z, and for any positive constant &, there exists a 6(z(ty)) > 0
such that

tp+0 Na ti+0
/ SO L (23 (), el 2a(t) A — % > / (s 2(0)) — 29113 d,
tk i=1 22

for any 0 € (0,6(z(ty))]. If z(tx) = 2°, then the equation above holds with 6(z(tx)) = 0.

Proof. At time 7 = ty, 25, (t; zi(tr)) = zi(tx) and Z2_;(7;2_;(tx)) = 2—i(tx), and so

S Lt 0]}, 2t 2a(60) = D Tt 2a(80)) = lo(t) = =11,

where the last equality is from Definition 5. Since @) > 0, v > 1, and at least one agent i
satisfies z;(tx) # 2, we have that z(t)) # 2¢ and

Na
D Li Gt zi(t), 2ot 2-a(te)) > |l2(8) — 23 > 0.
i=1
Equivalently, we have
Nq
N L (it 2i(t))s 2ot 2-a(tk)) > |28 (B 2(8)) — 2“1 (13)
i=1

Under the assumptions, 25 (7; z;i(tx)), 2—i(s)) and Z_;(7; z_;(tx)) are absolutely continuous in
7, forany i =1, ..., N,. Any quadratic function of 2z, and Z_;, including each L?, is therefore
absolutely continuous in 7. Thus, for any given £ > 0, we can choose a §(z(tx)) > 0 such
that for any 7 € [ty, tx + 0(2(t))),

iLf(ZZi(T; 2i(te)), 2-i(mi 2mi(t)) > 207 — t)8 + [z (73 2(t) — 215,
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and equality holds when 7 = t; 4+ d(2(t)). That is, tx + §(z(tx)) is the first time at which
the two sides of the inequality are equal. Choosing such a 6(z(¢x)) > 0 is possible even if
each L7 is a decreasing function of 7 and ||z}, (7; 2(tx)) — 2°||3 is an increasing function of 7,
because of the initial margin in equation (13) and also because the functions have bounded
rate. The latter statement follows from the functions being quadratic, therefore the gradients
are linear, and from the bounds on the state and control trajectories, as stated in Remark
10. By integrating both sides in 7 over the interval [tg,t, + d(2(tx))], the inequality still
clearly holds. However, a larger value of §(z(t;)) can be obtained, since we are interested in
comparing the integral equations in the first place, rather than comparing the expressions
over all values of 7 € [tg, tx + 0(2(tx))]. Again, even assuming in the worst case that each L}
is a decreasing function of 7, while assuming ||23; (7; 2(tr)) — 2°/|3) is an increasing function
of 7, we still have that for any given £ > 0, there exists a d(z(tx)) > 0 such that

tr+6(2(ty)) Na
[ S ntmam). e n) dr
tk i=1
tp+6(2(tr)) )
- / 27— t)E + || (7 () — 213 dr
ti
) tp+6(2(tx)) )
= S(a(t)% + / (s 2(t)) — 23 dr. (14)
tg
Finally, we have
tp+6 Na ti+o
/ S L wt), 2alm 2 a(t)) dr > 6% + / e (75 () — 2113 dr,
th —1 th

for any d > 0 no bigger than 0(z(tx)), i.e., for any 6 € (0,6(z(tx))]. If 2(tx) = 2, then both
integrands are identically zero (see proof of Proposition 2). As a result, we immediately have
d(z(tx)) = 0. |

Remark 11. For a given value of v > 1, as ||z(tx) — 2¢|| decreases, so does the margin
in equation (13). Consequently, as the states approach the control objective, the value of
d(z(tx)) that satisfies the integral equality in equation (14) decreases. In fact, as z(tx) — 2¢,
the equation requires that §(z(tx)) — 0. This corresponds to an increasingly strict constraint
on the deviation of the optimized control from the assumed control as ||z(tx) — 2¢|| decreases.
It also requires that communication of control trajectories must happen at an increasing rate,
and with infinite bandwidth in the limit. Later, we will construct an update time that is
sufficiently small to guarantee that all agents have reached their terminal constraint sets via
the distributed receding horizon control, making it safe to henceforth apply the decoupled
linear feedbacks (dual-mode). The sufficiently small value for the update period then serves
as an upper bound on how small the value of 6 must be for dual-mode distributed receding
horizon control.
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The lemma above provides a test on the update period that later is used to guarantee
distributed receding horizon control stability. It would more be useful to have an analytic
expression for the test. Such an expression is difficult to obtain, since the trajectories in the
integrals in equation (14) are implicity defined and therefore hard to analyze. However, by
making an assumption that approximates and simplifies the functions in the integrals, we
are able to obtain an analytic bound on the update period.

Assumption 5. The interval of integration [ty,t; + d] for the expressions in equation (14)
is sufficiently small that first-order Taylor series approximations of the integrands is a valid
approximation for any z(tx) € Zyx. Specifically, we take

D i s ), 24 2af0)

Na

~lla(te) = 2llg + (1 —t) Y {VziLf(zi(tk% Z-i(t)) " (Aszi(te) + Biug;(tes 2i(t)))

i=1

o Xhen Vi L (i), 2a(0))T (Aj25(t) + Bty (1 25(01))) }
and
e (73 20)) — 271 = [[2(t8) — 2113 + (7 — 8)2(2(8) — 297 Q (A=(ty) + Bl (1)),
and ignore terms that are O((7 — ¢;)?) and higher-order.

Lemma 5. Under Assumptions 1 and 3-5, for any z(ty) € Zx, k € N, the margin in Lemma
4 1s attained with

B (v = Dll=(t) — 2913
6(Z<tk)> o éf + ('y — 1>>\max(Q> <R2 + U?%Lax>7

giwen the state and control bounds R and U,,q., respectively.
Proof. From equation (14), for a given z(t;), we want to choose a § such that
tr+06 Nq
/ D L2575 i), 2-i(s 2mi(t) — 125 (75 2(8)) — 218 dr — 6% >0,
22 i=1

with equality when 0 = 0(z(x)). Substitution of the Taylor series expression from Assump-
tion 5 into the integrals results in

0(6=C) < (v =Dllz(te) — =°ll5, (15)
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where C' combines the first order terms in the expansions, given as

C= [Za {%v%LiZ(Zi<tk)7 Zoa(te ) s () + yvds (b)) Tub; (te; 2i(t))

=1

+ Bjeniy Vi, L ) 2400 5 1)}
— {wlalts) = ¢ G Galty) + valti) i b z(tm)}] .

Note that the dependence on #; disappears since each L; is not a function of ¢; for any
neighbor j € N;. Since all VL; inner-product terms are consistent with the state z(¢;), we
can combine the sum to be

Nq

3 {5 T Caltn)s 2 )0 + Siens 3V, 5 alte), 2-00)) s 00)

=1

= qw(g(tr) — ¢°) G Gq(t).
Consequently, we can simplify C' as
C=(y—1) [wlqlts) = ¢)"GTG4(tr) + vi(tr) ule (tr; 2(te))]
= (7 = 1)(2(ts) — 2°)" Q2 (13 2(t1))-

Since C'is the inner-product of (in general) different vectors, it could be positive or negative.
In equation (15), (v — 1) > 0 is given and £ > 0 is given and we are looking for the largest
0 such that the inequality holds. Note that if C' > &, the inequality holds for any positive 9.
In the worst-case, the constant C' will be a negative number, removing more of the margin
for 9. More precisely, we first observe that for any two vectors x and y,

vy > —max{|z| [|y|[*}.
From this, and using the bound assumptions in equation (11), namely

l2(te) = 217 < R?,and |25 (tes 2(t0))* < B* + U3

we have .
(Q2(2(tk) — 29) (@254 (tks 2(1h))) > —Amax(Q) (B* + UL,) -
So, in the worst case, we have that 0 must satisfy
5 [€ + (v = DAnax(@) (R* + Ui)] < (v = DIf2(ts) — 2712,

or, equivalently,

(y = 1)ll=(t) — 213
O O = Do (Q) (P + U2
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The inequality above becomes an equality when § = 0(z(tx)), giving the stated result. W

Consistent with the observation in Remark 11, we see that 0(z(tx)) — 0 as z(t;) — 2°.
For an analytic test on the update period J, we can combine the equation for §(z(¢;)) in

Lemma 5 and equation (12) for &, to obtain

_ (r= DIl = #1G
€+ YAmax(@) (B2 + UZ,)
Note that equation for 6(z(¢;)) in Lemma 5 is made slightly more conservative here by

replacing (v — 1) with 7 in the denominator term. This is done only to facilitate analysis
that follows.

0(z(tr)) (16)

Remark 12. The upper bound on the update period in equation (16) has some interesting
features. The bound is relatively independent of ~, particularly if v > 1. The larger the
allowable bounds on the state and control (R and Uyay), and the larger the horizon time T,
the smaller the required update time. With regard to the control compatibility constraint,
i.e. that the optimized control deviate from the assumed control with a norm value at most
5%k, the update must also be faster for larger values of k. Given the conservative nature
of the proofs, it is not wise to infer too much from the bound in equation (16), but it is
reassuring to observe such intuitive affects. Additional comments on the conservatism of the
result will be stated at the end of this section.

We also note that since §(z(tx)) depends on ||z(t) — 2°||3), a centralized computation is
required to generate equation (16) at each receding horizon update. Otherwise, a distributed
consensus algorithm, as given in [24] for example, must be run in parallel to determine
||2(tk) — 2°|[3), or a suitable lower bound on it. In the dual-mode version defined below, no
such centralized computation is required on-line, since a fixed bound on the update period
is computed off-line and applied for every receding horizon update.

The first main theorem of the paper is now given.

Theorem 2. Under Assumptions 1 and 3-5, for a given fized horizon time T > 0 and for
any state z(t_1) € Zx, at initialization, if the update time & satisfies § € (0,6(z(tg))], k € N,
where 0(z(tx)) is defined in equation (16), then z¢ is an asymptotically stable equilibrium
point of the closed-loop system (8) with region of attraction Zx, an open and connected set.

Proof. If z(ty,) = 2, 4;(7; z;(tx)) = 0 for all 7 € [ty, tx + T] and every i = 1, ..., N, then the
optimal solution to Problem 2 is uj,(7; z:(tx)) = 0 for all 7 € [tg, tx + 7). This is shown
in the proof of Proposition 2. Since Az¢ = 0, z¢ is an equilibrium point of the closed-loop
system (8).

We observe that J¥(z(tx), T') has the following properties

o Ji(26,T) =0 and J&(2(tg), T) > 0 for z(tg) # 25,

o Ji(z(ty),T) is continuous at z(ty) = 2¢,
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e along the trajectory of the closed-loop system from z(ty), where z(to) = 2} (to; 2(t-1))
for any initial state z(t_;) € Zs,

tm
Ta(altn). T) = Je(alt). T) < = [ llafuelr) = 21y ar,

tg

for integers k, m with 0 < k < m < oo.

The first two properties follow from Proposition 2. The last property is derived as follows.
Combining Lemma 4 and Lemma 3, we have

tot1
Ju(2(tes1), T) — J5(2(tk), T) < —/ 12360 (75 2(t1)) — 2[4 dr.

ty

Applying this recursively gives the result for any t,, > t,. Following precisely the steps in
the proof of Theorem 1 in [6] from this point gives the stated result. |

From equation (16), we observe that d(z(tx)) — 0 as z(tx) — 2° As a consequence,
the control comparison constraint gets tighter, and the communication between neighboring
agents must happen with increasing bandwidth, as the agents approach their control objec-
tive. To mitigate these problems, we now propose a dual-mode version of the distributed
receding horizon control law. The closed-loop system will be equation (8) until all agents are
in the interior of their terminal constraint sets, at which point each control is synchronously
redefined to be the decoupled linear feedback defined in Assumption 3.

To construct the dual-mode version, we will make use of the monotonicity of J(z(tx), T')
for guaranteeing invariance properties of the distributed receding horizon control law. In
particular, under the conditions of Theorem 2, J(2(tx),T") monotonically decreases until
z(tr) = z° Therefore, the concatenated state z(tj) is contracting, in some norm-sense, at
each receding horizon update. The control switch must therefore rely on a test on the entire
state z(tx) to guarantee all agents are in their terminal constraint sets. A sufficient test is
whether

~

2(tr) € Q(emm) == {z e R¥*Na . ||z — zc||% < €min, Emin = minei} : (17)

If this holds, then

Na
l2(t) = 213 = D llzalti) = 2[5, < e = lz(te) = 217, < emin, Vi=1,., N,

i=1

guaranteeing all agents are in their terminal constraint sets. Under stated assumptions, we
will show that |[|z(t;) — 2¢||3 is contracting with each update, where the positive-definite,
symmetric weighting W will be defined more precisely below. Since the contraction is hap-
pening with a different norm-weighting than P, we require a sufficient test on the W-weighted
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quadratic term to guarantee that equation (17) holds. Recall that Apax(Qo) € R is the max-
imum eigenvalue of any symmetric matrix (o, and let A\, (Qo) € R denote the minimum
eigenvalue of ()g. Observe that if

)\min(W)gmin
2(ty) — 2°||2, < SminlT)Cmin 18
Io(t) — =y < s (18)
then we have
)\min w €min c
M ()2 (t) — ]2 < 2oV )omin oy oy ez e

)\maX (P)

The test on the W-weighted quadratic term is more conservative than testing for equation
(17) directly. However, since the W-weighted term is shown to strictly decrease for the
closed-loop system, we are guaranteed invariance, i.e., once equation (18) is true, it remains
true for all future time. Positive invariance is required as it will take some time for the
agents to agree, in a distributed way, that they are in the set Q(enyin)-

It is required that § be no larger than a value, denoted d,.y, that guarantees monotonic
decrease of the value function J5(z(tx),T) so that equation (18) holds after some finite time.
Now, we assume some quadratic bounds on the function J§; and show convergence of a
sequence such that equation (18), and hence equation (17), is guaranteed to hold after some
finite number of iterations, from any feasible state at initialization.

Assumption 6. For any z € Zy, there exists positive constants ki, ky € R, ko > ki, and
positive-definite, symmetric matrix W € R™NeX?Na gych that

killz = 2|y < J5(2,T) < kallz — 215y,
where
® k2 > Omax Y Amin(Q)/Amax (W) and
o ko — ki < dmax Y Amin(Q)/ (2Amax(W)),

and 0.y 1S defined as

_ (/7 - ]-)C : Where c é ()\mm(W)) Amin(@)‘gmin'

5maX - fay
é- + ryAmaX(Q> <R2 + Ur%ax) )\max(W) 4>\max<P)

The requirement that k3 > dmax Y Amin (@) /Amax (W) is not too restrictive, since the right-hand
side is a small number in general. The requirement that ks — k1 < OmaxY Amin (@) / (2Amax(W))
means ks is close to k;. Equivalently, this means that J(z,T') basically exhibits quadratic
growth, with a W-weighted norm. In the analysis that follows, it is not required to know the
values of ko and kq, so they do not need to be estimated. Since d,,.x is to be computed and
used in practice, it will be required to estimate the ratio Ay (W)/Amax(W). More simply,
if a reasonable lower bound on this ratio can be computed, the bound can be used to define
¢, although this results in more conservatism. Aside from computing the ratio, or a lower
bound on it, the weighting matrix W does not need to be computed.
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Lemma 6. Under Assumptions 1 and 3-6, for a given fixed horizon time T > 0 and for
any state z(t_1) € Zx, at initialization, if the update period § = ee, then for the closed-loop
system (8) there exists a finite integer | € N at which z(t;) € Qemm) and 2(tg) € Q(Emin)
for all k > 1.

Proof. From Lemma 3, the monotonicity statement on J5(z(tx),T), for all k € N, is
tk+6 Nll
J5(2(tes1), T) — J5(2(tk), T) < —/ D L2575 2i(t), 2-i(i 2oi(t)) AT+ 6%
tr i=1
From the Taylor series approximation in Assumption 5, we have

[ st a2 )

t i=1

~ 0|2 (te) — 2°IIG + 0%y (2(t) — 2°)" Q2 (ts 2(ta))-
From the proof of Lemma 5,
—(2(tr) = 2)" Qi (b 2(1)) < Amax(Q) (R + Uy -
Now, substituting § = dpax, We can rewrite the equation bounding J§(z(tx),T') as

J;(Z<tk’+l)7 T) - J;(Z(tk)? T) S _5maX7HZ<tk’) - ZCH2Q + 612nax (f + f)/)\max(Q) (R2 + Ur%lax))
)\min(Q)

< _5max'7m“z<tk) - ZC||12/V + 5mﬂX (ry - 1) C.

Using the bounds on J§(2(tx),T) from Assumption 6 we have

c c )\min Q c
kullz(tesr) = 29y < Rollz(te) — 2°I% — 6max’7#||z(tl€) = 2°I[y + Omax (v = D e
Amax (W)
Denoting yi = ||z(tx) — 2¢|| € [0, 00), we rewrite this as
ko — 5max )\min )\max w 6max —1)c
Yke1 < pyr + @, where p= 2 8 k(Q)/ ( ), o= %
1 1

Also from Assumption 6, ks > OmaxY Amin (@) /Amax (W) and

k2 - kl S 5max7)‘min(Q)/(/\max(W)2) < 5max’7)‘min(Q)/)‘max(W)a

which implies 0 < p < 1. Considering the sequence yj,1, which is bounded for each k£ € N,

by pyr + ¢, we observe that
k—1 4
k ) _
p ?J0+¢<ZP)] - —

Yoo = lim ygy1 < lim
=0
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Also, we can bound the ratio ¢/(1 — p) as
¢ Omax (7 — 1) ¢ < 20maxAmax(W) (7 — 1)e 2 pax(W)e
1— P kl + 5max7)\min(Q)/)\max(W) - k2 - 6max7)\min(Q) Amln(Q) ’

where the first inequality uses the assumed upper bound on ky — k1. From the definition of
¢ we have

2/\max(W)c o Amin(W)Emin

Aoin(@) 2 (P)
Therefore, denoting yo, = ||2(ts) — 2¢||%,, we have
/\min(W>5min €min
2(ts) — 263, <2 O 2(ts) — 26|13 < ,
[|2(tee) = 2°[[iw (D) l2(te) = 2°lI5 < =

and so z(ts) is in the interior of Q(emin). Moreover, for any y, = ¢ + ¢/(1 — p), where
¥ € (0,00), the sequence bound yr 1 < pyr + ¢ guarantees strict monotonic decrease of
the sequence. The reason is pyr + ¢ —yp = —(1 —p)yx + ¢ = =0 — ¢ + ¢ = —¥, and so
Yer1 < Yy — ¥. In particular, once y, < 2¢/(1 — p), we are guaranteed that equation (17)
holds, since the factor of 2 simply removes the 1/2 in the implication above.

Now, there is a finite integer [ € N for which y; < 2¢/(1 — p). If this were not the case,
Y1 < yr — ¢ would hold for all £ € N, which implies y;, — —o0 as k — oo. However, this
contradicts the fact that y, > 0 for all £ € N. Therefore, there exists a finite integer [ € N
for which y; < 2¢/(1 — p). Also, since the sequence is required to continue to decrease up to
at most the limit bound on ¢/(1 — p), we have positive invariance as well. This concludes
the proof. ]

Remark 13. If the update period ¢ is less than d,,.c, then the analysis above still holds,
provided the bound on the difference ks — k1 in Assumption 6 is tightened by replacing 6.
by 0.

For the control switch to occur synchronously between the agents, we require a distributed
means of determining when equation (18) holds. Since Lemma 6 guarantees monotonic
decrease in the W-norm sense, we shall cast the test in terms of the W-norm. Although this
incurs more conservatism, it implies that the agents will not come to agreement unless they
have all reached the state for which all subsequent receding horizon updates render (&)
a positively invariant set of the closed-loop system.

Distributed Consensus Algorithm for Synchronous Control Switching [24].

The algorithm defined here is a distributed means of determining when equation (18) holds.
By distributed, we mean each agent communicates only with neighboring agents. For the
algorithm to converge, a minimum number of information exchanges is required. We elect to
have a separate sample rate for this algorithm. Over the time interval [tg,t;41), We assume
neighboring agents will communicate Ny times, using notation

TkJ:tk—l-(S(l/Ns), lIO,l,...,Ns—l,
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to denote the times at which neighbors exchange information.

To define the dynamics of the switch mechanism, we introduce some notation. At any
algorithm update time 75, and for any agent i, let x;(7x;) € R™ be a non-negative scalar
value. Also, denote ¢ = 5min//\max(ﬁ) and ¥ = Apax (W) /Amin (W), where W is the weighting
matrix defined in Assumption 6. As with the definition of ¢ in Assumption 6, a reasonable
upper bound for this ratio, or equivalently a lower bound on Ayin(W)/Amax(W), could be
used in the place of ¥ below. The algorithm is as follows. For every agent i =1, ..., N,:

1. At any time 75,0 = ¢, set
xi(Tk,O) = Naq/’”'zi(tk) - ZfHQv
transmit z;(70) and receive ;(7x,0) from each neighbor j € N;.
2. For each time 7y, [ =1,2,..., Ny — 1,
(a) set
_ ¢
Ti(Tg) = TiTha-1) + N Z (2 (Thi-1) — 2i(Tha-1))
* jEN;
where ¢ > 0, and

(b) transmit z;(7,) and receive x;(7x;) from each neighbor j € N;.
3. Define x;(7 n,) according to the equation in 2(a) above. If
zi(Tk,N,) < €0 — €

where € is a specified tolerance satisfying 0 < € < g¢, then switch at time t;,; and exit
the algorithm. Otherwise, return to 1.

End of algorithm.

Under the conditions stated in a lemma below, namely if N, is sufficiently large, then
|z (16 v,) — Ave(z(ty))] <€, Vi=1,.., Ng,

where

1 Ng Nq

Ave(z(t)) = & Yoalte) =9 Y l=iltn) = 21 = llz(t) — 2|

¢ =1 i=1

From this, we have
Ullz(te) = 2| — € < wi(mon) < Wlle(tn) = 2l + e
Therefore, the test in part 3 of the algorithm guarantees that
[12(tk) = 2°Ify < Aumin(W)eo

and equation (18) holds.
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Lemma 7. For a specified tolerance €, satisfying 0 < € < €g, the distributed consensus
algorithm for synchronous control switching converges in Ny iterations provided that

e N, > (d,,, where d,, is the mazimum node degree of the graph G, and

e denoting A = 1 — (C/Ns)X\ao(L), where L is the Laplacian of the graph G and X\o(L) is
the second largest eigenvalue of L,

N 1/2
log e — log d, . 2
N, > T7 do = ; (i(Tr0) — Ave(z(tr))) )

where dy denotes a measure of initial disagreement.

It is proven in [24] that the eigenvalue A2(L) bounds the rate of convergence of the average
consensus algorithm in continuous time. Converting to discrete time, the convergence bound
becomes A\ defined above, and the first condition in the lemma implies 0 < A < 1. The
lemma says that if N, is sufficiently large, every agent will meet the tolerance specified in
the algorithm. Therefore, the test in step 3 of the algorithm implies the agents agree to
synchronously switch to the linear feedback controllers only if equation (18) holds, i.e., if all
agents are in the interior of their terminal constraint sets. Note that if dy < €, consensus has
been reached from the initial values for each x;, and the algorithm would terminate in one
iteration. The results of the lemma presumes that initially dy > €, as is the case in practice.
With 0 < A < 1 and dy > €, the second condition on N, provides a lower bound that is
positive.

Remark 14. Since N, will be large in general, the communication requirements between
receding horizon updates will be demanding for the algorithm to converge. To alleviate this,
observe that from the invariance property stated in Lemma 6, we know that once equation
(18) holds, it will continue to hold. As such, it is possible to communicate once every receding
horizon update. This is done by defining 7xn.; = tgn, + 01, so step 1 is entered every 6N,
seconds. The tradeoff of course is that the algorithm will take considerably more time to
converge. A sample rate between these two extremes could be used, one that is appropriate
for the given bandwidth limitations.

We now define the dual-mode distributed receding horizon controller.
Definition 10. (Dual-mode distributed receding horizon controller)
Data: Initial state z(t_1) € Zy, horizon time T' > 0, update time 6 = Jyax.

Initialization: At time t_q, follow the procedure given in Definition 7, yeiding a control
for time ¢ € [t_1, to].

Controller:

1. For t € [to, t1], employ the distributed receding horizon control law u}, (¢; z(to)).

33



2. At any time t;, k € N:

(a) If the distributed consensus algorithm has converged (step 3), employ the
decoupled linear feedbacks defined in Assumption 3 for all time ¢ > t;. Else:

(b) Employ the distributed receding horizon control law u} (¢; z(tx)) for time
t € [th, tel-

Lemma 6 guarantees that, under the assumptions, the inequality in equation (18) will hold
after a finite number [ € N of receding horizon updates. Under the condition of Lemma
7, the agents will agree to switch at time ¢;,; to the decoupled linear feedback controllers.
Since equation (18) holds, the agents are known to be in a set for which these feedbacks are
asymptotically stabilizing. Therefore, the dual-mode distributed receding horizon controller
results in asymptotic stability with region of attraction Zyx. Formally, we now state this as
the second main theorem of the paper.

Theorem 3. Under Assumptions 1 and 3-6 and under the conditions of Lemma 7, for a
given fized horizon time T > 0 and for any state z(t_1) € Zyx, at initialization, if the update
period § = Opaz, then 2€ is an asymptotically stable equilibrium point of the closed-loop system
resulting from the dual-mode distributed receding horizon controller, and Zs, is a region of
attraction.

Remark 15. The distributed receding horizon control law of Theorem 2 requires that all
agents have the following information available: the horizon time T, the update period 9,
and all parameters in the computation for §(z(¢x)) in equation (16), which includes the
centralized computation of ||z(tx) — 2°||3, at each receding horizon update. The dual-mode
distributed receding horizon control law of Theorem 3 requires that all agents have the
following information available: the horizon time 7', all parameters in the computation for
Omax iN Assumption 6, and the parameters for the distributed consensus algorithm, satisfying
the conditions in Lemma 7. Clearly, both controllers require some centralized information;
however, the dual-mode version does not require any on-line centralized computations. We
note that for the controller of Theorem 2, another consensus algorithm could be incorporated
for distributed computation of ||z(t;) — 2°|[3) at each receding horizon update.

4.3 Alternative Formulations

In this section, we discuss two independent modifications to the distributed receding horizon
control approach given in Section 4.1. First, we briefly explore the implications of transmit-
ting assumed position information, instead of assumed control information, between neigh-
boring agents. Next, the effects of using a position comparison constraint, rather than the
control comparison constraint, in each distributed optimal control problem is investigated.
The distributed optimal control problems here require only the assumed position tra-
jectories from each neighbor. As such, neighboring agents could instead exchange assumed
position trajectories, rather than assumed control trajectories. The result would be that
agents would then not have to integrate the equations of motion for each neighboring agent,
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and also not require a separate transmission to obtain the initial condition for each neighbor-
ing agent. The result is less communication between neighboring agents and simplification
in the optimal control computations. In other problems, however, it may be that the state
information of neighbors required in each local optimal control problem is more demanding.
This would be the case here, for example, if the distributed integrated costs depended also
on the assumed velocity of every neighbor. In such cases, the communication requirements
are lower by sharing initial state and assumed control trajectory information at each update.
To generalize, the tradeoff between exchanging control or state trajectory information, in
terms of the overall communication and computation requirements, should dictate how the
needed assumed information should be attained.

We now discuss some implications of replacing each control comparison constraint with
a position comparison constraint. The control comparison constraint is

[lwi(s; 2i(tn)) = @i(s; zi(te))|] < 8%k, s € [ta, b + T,
whereas a position comparison constraint is
lqi(s; zi(tr)) — Gi(s; zi(te))|] < 8k, s€ [t te + T

It is the proof of Lemma 3 that requires a bound on the norm of the difference between the
assumed position trajectories and the actual position trajectories. If the control comparison
constraint is replaced by the position comparison constraint, the result in the lemma still
follows by substituting the constraint bounds directly into the bounding argument. The
resulting constant ¢ is then redefined to be

&= wrT(4M +4/3) [R + kT°].

Now, & grows as a lower-order function of horizon time T', with effectively the same growth
relation to the other parameters as before. The upper-bound on the update period ¢, defined
as Omax Or 0(2(tx)) in equation (16), is proportional to 1/(£ 4+ c¢), where ¢ is a constant. Thus,
the upper-bound on ¢ is potentially larger, i.e., less conservative, for large horizon times, when
using the position comparison constraint. Therefore, for a given x and ¢ that satisfies the
theoretical bounds, the comparison constraint bound §% could be larger using the position
comparison constraint, when 7' is large.

We now discuss another reason that the position comparison constraint may be favorable.
Assume that from a given initial condition z(ty), it takes Iy iterations to reach the terminal
constraint set using the distributed receding horizon control law, with either control or
position comparison constraint. From the proof of Lemma 3, recall that with the control
comparison constraint

g (75 25 (t)) = 4575 2;(t)) || < %W(T — )",

As a result we have

0K 0K

la(tesr) —at)l| < ==, foreach ke N = |lq(tn,) — q(to)]| < No—-
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On the other hand, from the position comparison constraint we have

lq(tn,) — q(to)]] < Nods.

A reasonable assumption is that Nyd is a constant, meaning that the number of iterations is
proportional to the receding horizon sample rate. The equations above imply that the closed-
loop position trajectory will deviate from the position trajectory at initialization by a factor
of 6 with the control comparison constraint, and by a factor of § with the position comparison
constraint. The theory requires the ¢ be sufficiently small. Therefore, obeying the sufficient
conditions in the theory implies that the receding horizon controller will resemble the initial
open-loop solution more when using the control comparison constraint.

Suppose now that the linear, homogeneous vehicle dynamics are replaced by the more
generic nonlinear dynamics

Zi(t) = fi(zi(t),u;(t)), foreachi=1,.., N,.

The dynamics above require additional assumptions, e.g., stabilizability around each respec-
tive equilibrium point z§, as specified in the formulation in [6]. Suppose that the cost is
still quadratic, with every distributed integrated cost L; depending upon each neighboring
state z; (or some components of the state), for j € N;. Again, the proof of Lemma 3 will
require a bound on the norm of the difference between the assumed trajectories Z; and the
actual trajectories 27, for every ¢ = 1,..., N,. If the comparison constraint is in terms of
the state z;, then the theoretical results follow immediately, since the constraint bounds can
be directly substituted into the bounding argument in the proof. If the control comparison
constraint is used, however, achieving a bound on the difference between assumed and actual
state trajectories becomes more cumbersome. Finally, we note that the analysis in [6] can
be used for construction of the distributed terminal cost and constraint functions.

From a numerical point of view, the control comparison constraint may be more appro-
priate. Specifically, consider the case where, for a given horizon time 7', the value of the
allowable product 8%« is not too different for the control and position comparison constraint
formulations. The control comparison constraint implies that

1gi (53 2i(te)) — Gi(s; 2 (tx)|] < (5 — t)?6%k/2, 5 € [t + T).

Thus, we have a parabolic constraint on the position, and for s > 5 4+ v/2, this constraint is
less stringent than the position comparison constraint. If 7' is large, then, each distributed
optimization problem is generally easier with the control comparison constraint, in the sense
that the position trajectory is not constrained to be as close to the previous trajectory, as
time proceeds.

The observations above should be taken in the light that the theoretical conditions are
conservative. In practice, values for § much larger than those specified by the theory are
successful. Moreover, the control comparison constraint has been tested in simulations, with
success, while the position comparison constraint has yet to be tested. As part of our future
work, we shall compare the performance of the two formulations in simulations.
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In the next section, formations of vehicles are stabilized using the centralized and dis-
tributed receding horizon controllers defined in the previous sections. The simulations reveal
that for a fixed, small value for the update period ¢§, convergence is obtained with good ac-
curacy. Moreover, the performance of the distributed implementation is comparable to that
of the centralized implementation.

5 Formation Stabilization Example

A simulation of a four vehicle formation is presented in this section. The dimension of the
position vector for all agents is two (n = 2). The state and control constraint sets are defined
as

Z=RY U={(u,u) eR® : -1<uy; <1, j=1,2}.

The objective is a fingertip formation that tracks the reference trajectory (qre(t), Gret(t)) €
R*, defined as

(t,0), t €[0,10)
Ger(?) = { (10,10 — ), t€ [10,00) ’ (19)

where ty = 0 in the notation of the previous sections. The acceleration §,e(t) is zero for all
time except at ¢ = 10 seconds. To be consistent with the cooperative stabilization objective,
we rewrite the system dynamics in equation (1) in error form. In particular, the error system
for any agent i has state (q; — Gref, §; — Grer) and dynamics §; = u;. The jump in the reference
velocity at time ¢t = 10 serves to examine how well the error dynamics are stabilized for two
different legs of the reference trajectory. Equivalently, the problem is to stabilize the error
dynamics from an initial condition at time 0, and then again from the current state at time
10.

To eliminate any offset between the center of geometry of the formation and the reference
trajectory, we set the formation path to g4(t) = (0,0) for all ¢ > 0. The vector formation
graph is defined by vertices V = {1,2,3,4} and relative vectors & = {(1,2), (1,3),(2,4)}.
As in the generalization of Section 2, the core vehicles associated with the tracking cost are
{1,2,3}. The relative vectors are defined for the two legs of the reference trajectory as

[ (=2,1), te]0,10) [ (=2,-1), te]0,10)
d12_d24_{ (1,2), te[10,00) ’ d13_{ (—1,2), te[10,00)

The common rotation in the vectors at time ¢ = 10 is match the heading of the fingertip
formation with the heading of the reference trajectory. The initial conditions for each agent
are given as ¢1(0) = (—1,2), ¢2(0) = (—4,0), ¢3(0) = (=2,0) and ¢4(0) = (—=7,—1), with
¢;(0) = (0,0) for each agent i € V. In both centralized and distributed receding horizon
implementations, a horizon time of T'= 5.0 is used. Also, the following weighting parameter
values are consistent in both implementations: w = 2.0, v = 1.0 and pu = 2.0. As stated,
collision avoidance is not incorporated in the optimal control problems, either by cost or
constraint. In all simulation results presented, no collisions were observed to occur.
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To solve the optimal control problems numerically, we employ the Nonlinear Trajectory
Generation (NTG) software developed at Caltech. A detailed description of NTG as a real-
time trajectory generation package for constrained mechanical systems is given in [21]. The
package is based on finding trajectory curves in a lower dimensional space and parameterizing
these curves by B-splines. Sequential quadratic programming (SQP) is used to solve for the
B-spline coefficients that optimize the performance objective, while respecting dynamics and
constraints. The package NPSOL [12] is used to solve the SQP problem.

For the centralized receding horizon control law, parameter values in the optimal control
problem must be chosen to guarantee that Assumption 2 is true. For the weights chosen
above, K is defined as the linear quadratic regulator and P the corresponding stable solution
to the algebraic Riccati equation. Choosing o = 0.4 implies that the assumption (i) is true.
To prove this, define y = z — 2¢ and observe that

y'Py<a < )\max(P)yTPy < Aax(Pla = yI' Py < Amax (P)

/\max P
=  y'PBB"Py < \me(P)a & 'K TKy< ¥
i
Choosing @ < 112/ Amax(P) =~ 0.4 guarantees that ||Ky||*> < 1. Finally, the latter condition
guarantees that K (z—z¢) € U= for all 2 € Q(a), since each component of Ky will be between
-1 and 1 for all time. For an update period of 6 = 0.5, centralized receding horizon control of

the fingertip formation is shown in Figure 2. The four closed-loop position trajectories of the

Position Space

Y motion (m)

-5 0 5 10
X motion (m)

Figure 2: Four vehicle fingertip formation using centralized receding horizon control.

vehicles are shown in the figure, with each vehicle depicted by a triangle. The heading of any
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triangle shows the direction of the corresponding velocity vector. The symbols along each
trajectory mark the points at which the receding horizon updates occur. The legend identifies
a symbol with a vehicle number for each trajectory. The triangles show the position and
heading of each vehicle at snapshots of time, specifically at 0.0, 6.0, 12.0 and 18.0 seconds.

Also shown at these instants of time are the reference trajectory position g,e(t), identified
by the black square, and the average position of the core vehicles g (), identified by the
yellow square. The tracking part of the cooperative objective is achieved when ¢, (t) = gret(?),
i.e., when the two squares are perfectly overlapping. At time 6.0, the vehicles are close to
the desired formation, and the squares are nearly overlapped, indicating that the tracking
objective is being reached. After 8.0 seconds, the formation objective has been met to a
numerical precision of 0.01, which is the value of the the optimal cost function at that time.
At time 12.0, the snapshot shows the formation reconfiguring to the change in heading of
the reference trajectory which occurred at time 10.0. At time 18.0, the objective has again
been met and the optimal cost function has a numerical value of less that 0.01.

The receding horizon control law time history for agent 3 is shown in Figure 3. At receding

Receding Horizon Control of Agent 3

Control (m/secz)

0 2 4 6 8 10 12 14 16 18
time (sec)

Figure 3: Centralized receding horizon control law time history for agent 3.

horizon updates, the control is not required to initially match the last control value applied.
Consequently, the resulting closed-loop control will be discontinuous in general. The figure
shows greater discontinuity during the transient phase of the closed-loop response, with the
largest discontinuity occurring at time 0.0 and at time 10.0, when the reference trajectory
changed heading.
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For the distributed receding horizon implementation, the initial state at time 0.0 is used
for initialization, as described in Definition 7. In terms of the notation, we thus have t_; =
0.0. Regarding the conditions in Assumption 3, we first choose Q; = Amax(Q)I(4), Where
Amax(@) =~ 6.85. As in the centralized case, K; is defined as the linear quadratic regulator
and P; the corresponding stable solution to the algebraic Riccati equation. Following the
steps above, we can show that «; = 0.33 guarantees that the conditions in the assumption
will hold. Finally, we set v = 2 in the cost functions of the distributed optimal control
problems. The distributed receding horizon controller is applied for all time and switching
to the decoupled feedbacks is not employed.

Before employing the distributed receding horizon control law define in Section 4.1, we
first explore what happens when neighbors are assumed to have zero control and the control
comparison constraint is not enforced (k = +o0). This was explored in simulations in a
previous paper [10]. In other words, neighbors are assumed to continue along straight line
paths over any optimization horizon. For an update period of § = 0.5, the result is shown
in Figure 4. The receding horizon control law time history for agent 3 is shown in Figure 5.
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Figure 4: Four vehicle formation using distributed receding horizon control, assuming neigh-
bors continue along straight line paths at each update and without enforcing the control
comparison constraints (k = +00).

The response is characterized by overshoot, as agents believe neighbors will continue along
vectors tangent the path over the entire optimization horizon at each update. The figure
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Receding Horizon Control of Agent 3

Receding Horizon Control of Agent 3
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Figure 5: Distributed receding horizon control law time history of agent 3. Left figure shows
time history when 6 = 0.5, and right figure shows time history when 6 = 0.1.

shows the position and heading triangles at the same snapshots of time as before, plus one
additional snapshot at time 24.0. As time grows, the formation is observed to get closer to
meeting the formation objective, but only after a long time. Moreover, the formation never
meets the objective to acceptable precision.

Interestingly, for this given weights in the cost function, the closed-loop performance is
observed to stay the same even if the update period is decreased. In particular, if § is reduced
to 0.25 or 0.1, the response is nearly the same. For example, the receding horizon control
law time history for agent 3 with § = 0.1 is also shown in Figure 5. As in the previous paper
[10], other parameters were observed to improve the performance in this case. Specifically,
increasing the damping weighting v reduces the overshoot effect, although the response of
the formation naturally becomes more sluggish. Also, if the horizon time T is shortened,
overall performance improves, as the assumption becomes more valid. The reason is that
a straight line approximation is generally a valid approximation locally, and shrinking T’
means the assumption should hold over a more local domain, relative to larger values of T

In the formulation in [16], where each agent optimizes for itself as well as for neighboring
agents, a similar effect is observed. There, agents assume that neighbors will react solely
with regard to the local cost function and constraints. Apparently, such a self-interested
philosophy is not too bad if agents are not looking too far into the future, since initial
conditions are consistent in all distributed optimization problems at each update.

Now, we consider the performance of the distributed receding horizon control law defined
in Section 4.1. After initialization, the control comparison constraint is enforced, setting
k = 2. Although the norm in each control comparison constraint is defined to be the
Euclidean 2-norm, we implement the oo-norm, since it is a linear constraint and therefore
easier for the optimization algorithm. For an update period of § = 0.5, centralized receding
horizon control of the fingertip formation is shown in Figure 6. As before, the triangles show
the position and heading of each vehicle at the time snapshots of 0.0, 6.0, 12.0 and 18.0
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Figure 6: Four vehicle formation using distributed receding horizon control.

seconds. The performance is close to that of the centralized implementation. At snapshot
time 6.0, the formation is slightly lagging the reference, compared to the centralized version.
Also, vehicles 1 and 3 in particular slightly overshoot, in comparison to their centralized
counterparts, when the reference heading changes at time 10.0. At time 18.0, the formation
objective is close to being met, and for slightly more time the same precision as the centralized
implementation is achieved. The distributed receding horizon control law time history for
agent 3 is shown in Figure 7. In the control comparison constraint, we have that 6%k =
0.5. As a byproduct of this constraint, the allowable size of discontinuity in the closed-
loop control at receding horizon update times is reduced. In particular, for the centralized
implementation, the control can jump by as much as 2, e.g., from -1 to 1. However, in
the distributed implementation with the control comparison constraint, since we used the
oo-norm, each component of the control can jump by 0.5 at most. The control in Figure
7 shows a few places where such maximal discontinuities occur, specifically just after time
10.0 when the reference trajectory changes heading.

Since agents are relying on the assumption that neighbors keep doing what they were
doing, and the control comparison constraint ensures that the assumption is not too far off,
stability is ensured. In fact, if the comparison constraint is removed, stability is observed
in the simulation for the chosen parameter values above. The sensitivity to horizon time,
as observed above when neighbors are assumed to continue along straight-line paths, and as
observed in the formulation in [16], is no longer present.

Regarding the communication requirements of transmitting assumed controls to neigh-
boring agents, in the NTG formulation corresponding to the simulations above, 14 B-spline
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Receding Horizon Control of Agent 3
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Figure 7: Distributed receding horizon control law time history for agent 3.

coefficients specified the two-dimensional assumed control trajectory of each agent. In com-
parison, when agents assume neighbors continue along straight lines, 4 numbers much be
communicated at each update, representing the initial condition of the state at the update
time. Thus, such representations of trajectories in the optimization problem can aid in
keeping the communication requirements closer to that of other decentralized schemes [8].

6 Conclusions and Extensions

We have shown under what assumptions a centralized optimal control problem, whose cost
couples the states of a set of dynamically decoupled subsystems, could be decomposed into a
set of distributed optimal control problems for a distributed receding horizon implementation.
The implementation requires an additional constraint in the local optimal control problems,
namely a constraint ensuring that assumed and applied control trajectories not deviate too
far from one another. Asymptotic stability is proven in the absence of uncertainty and
for sufficiently fast receding horizon updates. Although the details of the theory here are
specific to homogeneous and linear dynamics, the approach is general and the nonlinear,
inhomogeneous case is worked out elsewhere [9].

As discussed in Section 4.3, the theory is quite conservative in that, when the update
period is small enough to satisfy the theoretical conditions for asymptotic stability, the
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control comparison constraint implies the closed-loop trajectories must remain close to the
trajectories computed at initialization. This implication is not a desirable property, as
it takes away from the power of the receding horizon philosophy, namely, the ability to
recompute an optimal action based on current conditions. Still, in practice, larger values for
the update period than required by the theory achieve performance that is comparable to the
centralized implementation. Less conservative results will be one objective in our ongoing
research.

The inter-agent communication requirements of our approach are more intensive than
that of decentralized feedback control [8]. The tradeoff is that the power of an optimization-
based approach is available, namely, the ability to address performance in the presence
of generic constraints and nonlinearities. Moreover, no particular structure in the overall
system dynamics is required; all agents could have different dynamics. We also note that
the dimension of each distributed optimal control problem is equal to that of an optimal
control problem of the single corresponding agent. Thus, there is considerable improvement
in tractability over the centralized problem, particularly when the number of agents N,
is large. If the trajectories are known to be sufficiently smooth, and polynomial-based
approximations are valid, the communication requirements need not be substantially worse
than that of standard decentralized schemes.

We should also emphasize that the multi-vehicle formation stabilization problem is simply
a venue. In other problems where the performance objective, specifically the integrated cost,
is decomposable in such a way that the summation recovers the centralized cost, the approach
is applicable. Also, if constraints that couple the states and/or controls of neighboring agents
are present, the distributed implementation still preserves the property that if there exists a
feasible solution at initialization, there exits a feasible solution to all subsequent distributed
optimizations problems. The initialization phase of the distributed implementation, however,
now requires a better guess for the assumed controls, namely, one that is known to be feasible.
Still, this requirement is no stronger than that imposed on the centralized implementation; if
the centralized problem has an initial feasible solution, subsequent feasibility can be ensured.
If an initially feasible solution to the centralized problem is available, it could be used to
define the assumed controls at initialization in the distributed case. For the asymptotic
stability results to hold, the coupling constraints must satisfy the stated conditions on the
set Z. It may be of interest to see if coupling in the dynamics, as with the problem addressed
in [14], could also be addressed by the formulation here.

The theory will ultimately be applied to the Caltech Multi-Vehicle Wireless Testbed [7].
Other venues for application of the theory may exist, for example, in dynamic formulations
of resource allocation problems in networks, or in dynamic game theoretic settings. For
instance, the approach by Baglietto et al [2] for distributed dynamic routing in a network
could be compared to a discrete-time version of our distributed receding horizon control law.
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